返回

黑马C++教程笔记

数据的输入与输出

cout<<***<<endl;用于数据输出,使用<<衔接。

cin>>*;用于接收数据输入。

#include<iostream>
using namespace std;

int main() {
	//##### 数据的输入与输出 #####

	int a = 0;

	cout << "请输入数据:" << endl;

	cin >> a;

	cout << "输出数据a:" << a << endl;

	return 0;
}

指针

指针的定义与使用

指针本质上是一个变量同int、string等等,它是一个占用4个字节的(64位操作系统下占8个字节),用于存储内存地址的变量。

#include<iostream>
using namespace std;

int main() {

	///##### 定义指针 #####
	int a = 10;
	//指针定义的语法:数据类型 * 指针变量名;
	int* p;
	//让指针记录变量a的地址
	p = &a;
	cout << "a的地址为:" << &a << endl;
	cout << "指针p为:" << p << endl;
	//a的地址为:006FF948
	//指针p为:006FF948

	///##### 使用指针 #####
	//可以通过解引用的方式来找到指针指向的内存
	//指针前加 * 代表解引用,找到指针指向的内存中的数据
	*p = 1000;
	cout << "a = " << a << endl;
	cout << "*p = " << *p << endl;


	///##### 指针所占内存空间(多少字节) #####
	cout << "sizeof (int*) = " << sizeof(int*) << endl;
	//在32位操作系统下占4个字节,在64位操作系统下占8个字节

	return 0;
}

空指针与野指针

空指针和野指针都是无法访问的,因为它们没有在内存中申请空间。

#include<iostream>
using namespace std;

int main() {
	///##### 空指针 #####
	//1.空指针用于给指针变量初始化
	int* p = NULL;//内存中为:=0;

	//2.空指针是不可以进行访问的
	//0~255之间的内存编号是不允许访问的
	//*p = 100;//程序崩溃


	///##### 野指针 #####
	//指针变量p指向内存地址编号为0x1100的空间
	int* p = (int*)0x1100;

	//访问野指针报错
	cout << *p << endl;
	//野指针和空指针都不是我们申请的空间,因此不要访问。

	return 0;
}

常量const

const修饰谁,谁就不可以修改。

#include<iostream>
using namespace std;

int main() {
	//##### 常量const #####
	// const 修饰谁,谁不可以改

	//1.const修饰指针——常量指针
	{
		int a = 10;
		int b = 10;
		const int* p = &a;
		//常量指针:指针的指向可以修改,但指针指向的值不可以改

		//*p = 20;//错误,指针指向的值不可以修改
		p = &b;//正确,指针指向可以修改
	}

	//2.const修饰常量——指针常量
	{
		int a = 10;
		int b = 10;
		int* const p = &a;
		//指针常量:指针的指向不可以改,但指针指向的值可以改

		*p = 20;//正确,指针指向的值可以修改
		//p = &b;//错误,指针指向不可以修改
	}

	//3.const即修饰指针,又修饰常量
	{
		int a = 10;
		int b = 10;
		const	int* const p = &a;
		//指针常量:指针的指向和指针指向的值都不可以改

		//*p = 20;//错误
		//p = &b;//错误
	}

	return 0;
}

指针和数组

通过指针++来偏移数组中的指针指向

#include<iostream>
using namespace std;

int main() {
	//##### 指针和数组 #####
	
	//利用指针访问数组中的元素
	int arr[10] = { 1,2,3,4,5,6,7,8,9 };

	cout << "第一个元素为:" << arr[0] << endl;

	int* p = arr;//arr就是数组首个参数的地址

	cout << "使用指针访问第一个元素:" << *p << endl;

	p++;//指针偏移

	cout << "利用指针访问第二个元素:" << *p << endl;

	//第一个元素为:1
	//使用指针访问第一个元素:1
	//利用指针访问第二个元素:2

	cout << "利用指针遍历数组" << endl;
	int* p2 = arr;

	for (int i = 0; i < 13; i++)
	{
		//cout << arr[i] << endl;
		cout << *p2 << endl;
		p2++;
	}

	return 0;
}

引用传递

向函数传递地址,然后在函数中对地址进行解引用,最后进行值修改

#include<iostream>
using namespace std;

void swap(char* p1, char* p2)
{
	char temp = *p1;
	*p1 = *p2;
	*p2 = temp;
}

int main() {
	//##### 引用传递 #####
	char a = 'a';
	char b = 'b';

	swap(&a, &b);
	cout << "a = " << a << endl;
	cout << "b = " << b << endl;

	//a = b
	//b = a

	return 0;
}

结构体

与C#不同的是C++允许使用类似于数组初始化的方式 student stu = { "李四",19,60 };初始化结构体。

#include<iostream>
using namespace std;

//结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

int main() {
	//##### 结构体的定义与使用 #####
	student stu = { "李四",19,60 };

	cout << "姓名:" << stu.name << " 年龄:" << stu.age << " 分数:" << stu.score << endl;

	return 0;
}

结构体做函数参数

在函数中访问引用变量的参数,需要使用->操作符,而非.

stu->age

#include<iostream>
using namespace std;

//学生结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

//值传递
void printStudent(student stu)
{
	stu.age = 28;
	cout << "子函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
}

//地址传递
void printStudent2(student* stu)
{
	stu->age = 28;
	cout << "子函数中 姓名:" << stu->name << " 年龄: " << stu->age << " 分数:" << stu->score << endl;
}

int main() {
	//##### 结构体做函数参数 #####

	student stu = { "张三",18,100 };
	//值传递
	printStudent(stu);
	cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
	//子函数中 姓名:张三 年龄: 28 分数:100
	//主函数中 姓名:张三 年龄: 18 分数:100
	cout << endl;

	//地址传递
	printStudent2(&stu);
	cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;
	//子函数中 姓名:张三 年龄: 28 分数:100
	//主函数中 姓名:张三 年龄: 28 分数:100

	return 0;
}

函数参数中使用const

在函数的引用参数前添加const修饰符,可以防止错误修改参数的数据。

#include<iostream>
using namespace std;

//学生结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

//const使用场景
void printStudent(const student* stu) //加const防止函数体中的误操作
{
	//stu->age = 100; //操作失败,因为加了const修饰
	cout << "姓名:" << stu->name << " 年龄:" << stu->age << " 分数:" << stu->score << endl;

}

int main() {
	//##### 函数参数中使用const #####

	student stu = { "张三",18,100 };

	printStudent(&stu);

	system("pause");

	return 0;
}

在堆区创建数据new

new关键在在堆区开辟内存,除非手动使用delete关键字释放数据,否则数据不会自动销毁

#include<iostream>
using namespace std;

int* func()
{
	//使用new关键在在堆区开辟内存,除非手动释放,否则数据不会自动销毁
	//new返回的是该数据类型的指针
	int* a = new int(10);
	return a;
}

int main() {
	//##### 在堆区创建数据new #####

	int* p = func();

	cout << *p << endl;
	cout << *p << endl;
	
	//10
	//10

	//使用delete释放堆区数据
	delete p;

	//数组的创建与释放
	int* arr = new int[10];
	delete[] arr;

	return 0;
}

静态成员

静态成员变量特点:

  • 在编译阶段分配内存
  • 类内声明,类外初始化
  • 所有对象共享同一份数据

使用变量前添加类名域的方式访问静态参数:Person::m_A

class Person
{
	
public:

	static int m_A; //静态成员变量

	//静态成员变量特点:
	//1 在编译阶段分配内存
	//2 类内声明,类外初始化
	//3 所有对象共享同一份数据

private:
	static int m_B; //静态成员变量也是有访问权限的
};
int Person::m_A = 10;
int Person::m_B = 10;

void test01()
{
	//静态成员变量两种访问方式

	//1、通过对象
	Person p1;
	p1.m_A = 100;
	cout << "p1.m_A = " << p1.m_A << endl;

	Person p2;
	p2.m_A = 200;
	cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
	cout << "p2.m_A = " << p2.m_A << endl;

	//2、通过类名
	cout << "m_A = " << Person::m_A << endl;


	//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
}

int main() {

	test01();

	system("pause");

	return 0;
}

引用

引用的本质是个指针常量int* const ref = &a;

引用&必须初始化,在使用=操作时属于赋值操作,而非更改引用

#include<iostream>
using namespace std;

int main() {
	// ##### 引用& #####
	int a = 10;
	int b = 20;

	//int &c; //错误,引用必须初始化
	int& c = a; //一旦初始化后,就不可以更改

	c = b; //这是赋值操作,不是更改引用

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;
	cout << "c = " << c << endl;

	//a = 20
	//b = 20
	//c = 20

	return 0;
}

引用传递

#include<iostream>
using namespace std;

//引用传递
void mySwap(int& a, int& b) {
	int temp = a;
	a = b;
	b = temp;
}

int main() {
	// ##### 引用传递 #####
	int a = 10;
	int b = 20;

	//可以简化指针修改实参
	mySwap(a, b);
	cout << "a:" << a << " b:" << b << endl;

	//a:20 b:10

	return 0;
}

占位参数

#include<iostream>
using namespace std;

//函数占位参数 ,占位参数也可以有默认参数
void func(int a, int) {
	cout << "this is func" << endl;
}

int main() {
	//##### 占位参数 #####

	func(10, 10); //占位参数必须填补

	return 0;
}

构造

构造函数

构造函数分为有参、无参构造,拷贝构造

#include<iostream>
using namespace std;

//1、构造函数分类
// 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
// 按照类型分类分为 普通构造和拷贝构造

class Person {
public:
	//无参(默认)构造函数
	Person() {
		cout << "无参构造函数!" << endl;
	}
	//有参构造函数
	Person(int a) {
		age = a;
		cout << "有参构造函数!" << endl;
	}
	//拷贝构造函数
	Person(const Person& p) {
		age = p.age;
		cout << "拷贝构造函数!" << endl;
	}
	//析构函数
	~Person() {
		cout << "析构函数!" << endl;
	}
public:
	int age;
};

//2、构造函数的调用
//调用无参构造函数
void test01() {
	Person p; //调用无参构造函数
}

//调用有参的构造函数
void test02() {

	//2.1  括号法,常用
	Person p1(10);
	//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
	//Person p2();

	//2.2 显式法
	Person p2 = Person(10);
	Person p3 = Person(p2);
	//Person(10)单独写就是匿名对象  当前行结束之后,马上析构

	//2.3 隐式转换法
	Person p4 = 10; // Person p4 = Person(10); 
	Person p5 = p4; // Person p5 = Person(p4); 

	//注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明
	//Person p5(p4);
}

int main() {

	test01();
	//test02();

	return 0;
}

初始化列表

#include<iostream>
using namespace std;

class Person {
public:
	//初始化列表方式初始化
	Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}

	void PrintPerson() {
		cout << "mA:" << m_A << endl;
		cout << "mB:" << m_B << endl;
		cout << "mC:" << m_C << endl;
	}

private:
	int m_A;
	int m_B;
	int m_C;
};

int main() {
	Person p(1, 2, 3);
	p.PrintPerson();

	return 0;
}

常函数与常对象

常函数:

  • 成员函数后加const后我们称为这个函数为常函数
  • 常函数内不可以修改成员属性
  • 成员属性声明时加关键字mutable后,在常函数中依然可以修改

常对象:

  • 声明对象前加const称该对象为常对象
  • 常对象只能调用常函数
#include<iostream>
using namespace std;

class Person {
public:
	Person() {
		m_A = 0;
		m_B = 0;
	}

	//this指针的本质是一个指针常量,指针的指向不可修改
	//如果想让指针指向的值也不可以修改,需要声明常函数
	void ShowPerson() const
	{
		//const Type* const pointer;
		//this = NULL; //不能修改指针的指向 Person* const this;
		//this->mA = 100; //但是this指针指向的对象的数据是可以修改的

		//const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量
		this->m_B = 100;
	}

	void MyFunc() const
	{
		//mA = 10000;
	}

public:
	int m_A;
	mutable int m_B; //可修改 可变的
};


//const修饰对象  常对象
void test01() {

	const Person person; //常量对象  
	cout << person.m_A << endl;
	//person.mA = 100; //常对象不能修改成员变量的值,但是可以访问
	person.m_B = 100; //但是常对象可以修改mutable修饰成员变量

	//常对象访问成员函数
	person.MyFunc(); //常对象不能调用const的函数
}

int main() {
	test01();

	return 0;
}

友元

全局函数做友元

友元的目的就是让一个函数或者类 访问另一个类中私有成员

友元的关键字为 friend

class Building
{
	//告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容
	friend void goodGay(Building * building);

public:

	Building()
	{
		this->m_SittingRoom = "客厅";
		this->m_BedRoom = "卧室";
	}


public:
	string m_SittingRoom; //客厅

private:
	string m_BedRoom; //卧室
};


void goodGay(Building * building)
{
	cout << "好基友正在访问: " << building->m_SittingRoom << endl;
	cout << "好基友正在访问: " << building->m_BedRoom << endl;
}


void test01()
{
	Building b;
	goodGay(&b);
}

int main(){

	test01();

	system("pause");
	return 0;
}

类做友元

class Building;
class goodGay
{
public:

	goodGay();
	void visit();

private:
	Building *building;
};


class Building
{
	//告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容
	friend class goodGay;

public:
	Building();

public:
	string m_SittingRoom; //客厅
private:
	string m_BedRoom;//卧室
};

Building::Building()
{
	this->m_SittingRoom = "客厅";
	this->m_BedRoom = "卧室";
}

goodGay::goodGay()
{
	building = new Building;
}

void goodGay::visit()
{
	cout << "好基友正在访问" << building->m_SittingRoom << endl;
	cout << "好基友正在访问" << building->m_BedRoom << endl;
}

void test01()
{
	goodGay gg;
	gg.visit();

}

int main(){
	test01();

	return 0;
}

成员函数做友元


class Building;
class goodGay
{
public:

	goodGay();
	void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容
	void visit2(); 

private:
	Building *building;
};

class Building
{
	//告诉编译器  goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容
	friend void goodGay::visit();

public:
	Building();

public:
	string m_SittingRoom; //客厅
private:
	string m_BedRoom;//卧室
};

Building::Building()
{
	this->m_SittingRoom = "客厅";
	this->m_BedRoom = "卧室";
}

goodGay::goodGay()
{
	building = new Building;
}

void goodGay::visit()
{
	cout << "好基友正在访问" << building->m_SittingRoom << endl;
	cout << "好基友正在访问" << building->m_BedRoom << endl;
}

void goodGay::visit2()
{
	cout << "好基友正在访问" << building->m_SittingRoom << endl;
	//cout << "好基友正在访问" << building->m_BedRoom << endl;
}

void test01()
{
	goodGay  gg;
	gg.visit();
}

int main(){
	test01();

	return 0;
}

重载

运算符重载

operator+

class Person {
public:
	Person() {};
	Person(int a, int b)
	{
		this->m_A = a;
		this->m_B = b;
	}
	//成员函数实现 + 号运算符重载
	Person operator+(const Person& p) {
		Person temp;
		temp.m_A = this->m_A + p.m_A;
		temp.m_B = this->m_B + p.m_B;
		return temp;
	}


public:
	int m_A;
	int m_B;
};

//全局函数实现 + 号运算符重载
//Person operator+(const Person& p1, const Person& p2) {
//	Person temp(0, 0);
//	temp.m_A = p1.m_A + p2.m_A;
//	temp.m_B = p1.m_B + p2.m_B;
//	return temp;
//}

//运算符重载 可以发生函数重载 
Person operator+(const Person& p2, int val)  
{
	Person temp;
	temp.m_A = p2.m_A + val;
	temp.m_B = p2.m_B + val;
	return temp;
}

void test() {

	Person p1(10, 10);
	Person p2(20, 20);

	//成员函数方式
	Person p3 = p2 + p1;  //相当于 p2.operaor+(p1)
	cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl;


	Person p4 = p3 + 10; //相当于 operator+(p3,10)
	cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;

}

int main() {
	test();

    return 0;
}

左移运算符重载

class Person {
	//使用友元实现函数外访问私有变量
	friend ostream& operator<<(ostream& out, Person& p);

public:

	Person(int a, int b)
	{
		this->m_A = a;
		this->m_B = b;
	}

	//成员函数 实现不了  p << cout 不是我们想要的效果
	//void operator<<(Person& p){
	//}

private:
	int m_A;
	int m_B;
};

//全局函数实现左移重载
//ostream对象只能有一个
ostream& operator<<(ostream& out, Person& p) {
	out << "a:" << p.m_A << " b:" << p.m_B;
	return out;
}

void test() {

	Person p1(10, 20);

	cout << p1 << "hello world" << endl; //链式编程
}

int main() {

	test();

	return 0;
}

递增运算符重载

递增运算符分为前置递增和后置递增(++x x++),使用增加占位符来区分。


class MyInteger {

	friend ostream& operator<<(ostream& out, MyInteger myint);

public:
	MyInteger() {
		m_Num = 0;
	}
	//前置++
	MyInteger& operator++() {
		//先++
		m_Num++;
		//再返回
		return *this;
	}

	//后置++
	MyInteger operator++(int) {
		//先返回
		MyInteger temp = *this; //记录当前本身的值,然后让本身的值加1,但是返回的是以前的值,达到先返回后++;
		m_Num++;
		return temp;
	}

private:
	int m_Num;
};


ostream& operator<<(ostream& out, MyInteger myint) {
	out << myint.m_Num;
	return out;
}


//前置++ 先++ 再返回
void test01() {
	MyInteger myInt;
	cout << ++myInt << endl;
	cout << myInt << endl;
}

//后置++ 先返回 再++
void test02() {

	MyInteger myInt;
	cout << myInt++ << endl;
	cout << myInt << endl;
}

int main() {

	test01();
	//test02();

	return 0;
}

赋值运算符重载

需要注意深拷贝和变量不为空的问题

class Person
{
public:

	Person(int age)
	{
		//将年龄数据开辟到堆区
		m_Age = new int(age);
	}

	//重载赋值运算符 
	Person& operator=(Person &p)
	{
		if (m_Age != NULL)
		{
			delete m_Age;
			m_Age = NULL;
		}
		//编译器提供的代码是浅拷贝
		//m_Age = p.m_Age;

		//提供深拷贝 解决浅拷贝的问题
		m_Age = new int(*p.m_Age);

		//返回自身
		return *this;
	}


	~Person()
	{
		if (m_Age != NULL)
		{
			delete m_Age;
			m_Age = NULL;
		}
	}

	//年龄的指针
	int *m_Age;

};


void test01()
{
	Person p1(18);

	Person p2(20);

	Person p3(30);

	p3 = p2 = p1; //赋值操作

	cout << "p1的年龄为:" << *p1.m_Age << endl;

	cout << "p2的年龄为:" << *p2.m_Age << endl;

	cout << "p3的年龄为:" << *p3.m_Age << endl;
}

int main() {

	test01();

	//int a = 10;
	//int b = 20;
	//int c = 30;

	//c = b = a;
	//cout << "a = " << a << endl;
	//cout << "b = " << b << endl;
	//cout << "c = " << c << endl;

	return 0;
}

函数调用运算符重载

新知识点在于匿名函数调用MyAdd()(100,100) ,本质上是直接调用类的运算符重载。

class MyPrint
{
public:
	void operator()(string text)
	{
		cout << text << endl;
	}

};
void test01()
{
	//重载的()操作符 也称为仿函数
	MyPrint myFunc;
	myFunc("hello world");
}


class MyAdd
{
public:
	int operator()(int v1, int v2)
	{
		return v1 + v2;
	}
};

void test02()
{
	MyAdd add;
	int ret = add(10, 10);
	cout << "ret = " << ret << endl;

	//匿名对象调用  
	cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
}

int main() {

	test01();
	test02();

	return 0;
}

继承

继承父类

class Python : public BasePage{}

使用父类成员变量或函数,变量名前添加Base作用域

s.Base::m_A

多继承

C++允许继承多个父类,在子类调用父类参数,需要声明父类作用域;

	cout << s.Base1::m_A << endl;
	cout << s.Base2::m_A << endl;
class Base1 {
public:
	Base1()
	{
		m_A = 100;
	}
public:
	int m_A;
};

class Base2 {
public:
	Base2()
	{
		m_A = 200;  //开始是m_B 不会出问题,但是改为mA就会出现不明确
	}
public:
	int m_A;
};

//语法:class 子类:继承方式 父类1 ,继承方式 父类2 
class Son : public Base2, public Base1 
{
public:
	Son()
	{
		m_C = 300;
		m_D = 400;
	}
public:
	int m_C;
	int m_D;
};


//多继承容易产生成员同名的情况
//通过使用类名作用域可以区分调用哪一个基类的成员
void test01()
{
	Son s;
	cout << "sizeof Son = " << sizeof(s) << endl;
	cout << s.Base1::m_A << endl;
	cout << s.Base2::m_A << endl;
}

int main() {
	test01();

	return 0;
}

菱形继承

菱形继承问题:

  1. 羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。

  2. 草泥马继承自动物的数据继承了两份,其实我们应该清楚,这份数据我们只需要一份就可以。

#include<iostream>
using namespace std;


class Animal
{
public:
	int m_Age;
};

//继承前加virtual关键字后,变为虚继承
//此时公共的父类Animal称为虚基类
class Sheep : virtual public Animal {};
class Tuo : virtual public Animal {};
class SheepTuo : public Sheep, public Tuo {};

void test01()
{
	SheepTuo st;
	st.Sheep::m_Age = 100;
	st.Tuo::m_Age = 200;

	cout << "st.Sheep::m_Age = " << st.Sheep::m_Age << endl;
	cout << "st.Tuo::m_Age = " << st.Tuo::m_Age << endl;
	cout << "st.m_Age = " << st.m_Age << endl;

        //实际上输出的数据都是一样的
	//st.Sheep::m_Age = 200
	//st.Tuo::m_Age = 200
	//st.m_Age = 200
}


int main() {

	test01();

	return 0;
}

多态

动态多态

函数前面加上virtual关键字,变成虚函数,编译器根据传入子类参数不同进行重载。

#include<iostream>
using namespace std;

class Animal
{
public:
	//Speak函数就是虚函数
	//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。
	virtual void speak()
	{
		cout << "动物在说话" << endl;
	}
};

class Cat :public Animal
{
public:
	void speak()
	{
		cout << "小猫在说话" << endl;
	}
};

class Dog :public Animal
{
public:

	void speak()
	{
		cout << "小狗在说话" << endl;
	}

};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编

void DoSpeak(Animal& animal)
{
	animal.speak();
}
//
//多态满足条件: 
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象

void test01()
{
	Cat cat;
	DoSpeak(cat);


	Dog dog;
	DoSpeak(dog);
}


int main() {

	test01();

	system("pause");

	return 0;
}

纯虚函数和抽象类

在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容

因此可以将虚函数改为纯虚函数

纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;

当类中有了纯虚函数,这个类也称为抽象类

抽象类特点

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
#include<iostream>
using namespace std;

class Base
{
public:
	//纯虚函数
	//类中只要有一个纯虚函数就称为抽象类
	//抽象类无法实例化对象
	//子类必须重写父类中的纯虚函数,否则也属于抽象类
	virtual void func() = 0;
};

class Son :public Base
{
public:
	virtual void func() 
	{
		cout << "func调用" << endl;
	};
};

void test01()
{
	Base * base = NULL;
	//base = new Base; // 错误,抽象类无法实例化对象
	base = new Son;
	base->func();
	delete base;//记得销毁
}

int main() {

	test01();

	system("pause");

	return 0;
}

虚析构和纯虚析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码

解决方式:将父类中的析构函数改为虚析构或者纯虚析构

虚析构和纯虚析构共性:

  • 可以解决父类指针释放子类对象
  • 都需要有具体的函数实现

虚析构和纯虚析构区别:

  • 如果是纯虚析构,该类属于抽象类,无法实例化对象

虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;
类名::~类名(){}
#include<iostream>
using namespace std;

class Animal {
public:

	Animal()
	{
		cout << "Animal 构造函数调用!" << endl;
	}
	virtual void Speak() = 0;

	//析构函数加上virtual关键字,变成虚析构函数
	//virtual ~Animal()
	//{
	//	cout << "Animal虚析构函数调用!" << endl;
	//}


	virtual ~Animal() = 0;
};

Animal::~Animal()
{
	cout << "Animal 纯虚析构函数调用!" << endl;
}

//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。

class Cat : public Animal {
public:
	Cat(string name)
	{
		cout << "Cat构造函数调用!" << endl;
		m_Name = new string(name);
	}
	virtual void Speak()
	{
		cout << *m_Name <<  "小猫在说话!" << endl;
	}
	~Cat()
	{
		cout << "Cat析构函数调用!" << endl;
		if (this->m_Name != NULL) {
			delete m_Name;
			m_Name = NULL;
		}
	}

public:
	string *m_Name;
};

void test01()
{
	Animal *animal = new Cat("Tom");
	animal->Speak();

	//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏
	//怎么解决?给基类增加一个虚析构函数
	//虚析构函数就是用来解决通过父类指针释放子类对象
	delete animal;
}

int main() {

	test01();

	system("pause");

	return 0;
}

模板

函数模板

函数模板作用:

建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

语法:

template<typename T>
函数声明或定义
12

解释:

template — 声明创建模板

typename — 表面其后面的符号是一种数据类型,可以用class代替

T — 通用的数据类型,名称可以替换,通常为大写字母

#include<iostream>
using namespace std;

//交换整型函数
void swapInt(int& a, int& b) {
	int temp = a;
	a = b;
	b = temp;
}

//交换浮点型函数
void swapDouble(double& a, double& b) {
	double temp = a;
	a = b;
	b = temp;
}

//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b)
{
	T temp = a;
	a = b;
	b = temp;
}

void test01()
{
	int a = 10;
	int b = 20;
	
	//swapInt(a, b);

	//利用模板实现交换
	//1、自动类型推导
	mySwap(a, b);

	//2、显示指定类型
	mySwap<int>(a, b);

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;

}

int main() {

	test01();

	return 0;
}

普通函数与函数模板的调用规则

调用规则如下:

  1. 如果函数模板和普通函数都可以实现,优先调用普通函数
  2. 可以通过空模板参数列表来强制调用函数模板
  3. 函数模板也可以发生重载
  4. 如果函数模板可以产生更好的匹配,优先调用函数模板
#include<iostream>
using namespace std;

//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
	cout << "调用的普通函数" << endl;
}

template<typename T>
void myPrint(T a, T b) 
{ 
	cout << "调用的模板" << endl;
}

template<typename T>
void myPrint(T a, T b, T c) 
{ 
	cout << "调用重载的模板" << endl; 
}

void test01()
{
	//1、如果函数模板和普通函数都可以实现,优先调用普通函数
	// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
	int a = 10;
	int b = 20;
	myPrint(a, b); //调用普通函数

	//2、可以通过空模板参数列表来强制调用函数模板
	myPrint<>(a, b); //调用函数模板

	//3、函数模板也可以发生重载
	int c = 30;
	myPrint(a, b, c); //调用重载的函数模板

	//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
	char c1 = 'a';
	char c2 = 'b';
	myPrint(c1, c2); //调用函数模板
}

int main() {

	test01();

	system("pause");

	return 0;
}

具体化模板

具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型 具体化优先于常规模板 template<> bool myCompare(Person &p1, Person &p2)

#include<iostream>
using namespace std;

#include <string>

class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	string m_Name;
	int m_Age;
};

//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{
	if (a == b)
	{
		return true;
	}
	else
	{
		return false;
	}
}


//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{
	if ( p1.m_Name  == p2.m_Name && p1.m_Age == p2.m_Age)
	{
		return true;
	}
	else
	{
		return false;
	}
}

void test01()
{
	int a = 10;
	int b = 20;
	//内置数据类型可以直接使用通用的函数模板
	bool ret = myCompare(a, b);
	if (ret)
	{
		cout << "a == b " << endl;
	}
	else
	{
		cout << "a != b " << endl;
	}
}

void test02()
{
	Person p1("Tom", 10);
	Person p2("Tom", 10);
	//自定义数据类型,不会调用普通的函数模板
	//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
	bool ret = myCompare(p1, p2);
	if (ret)
	{
		cout << "p1 == p2 " << endl;
	}
	else
	{
		cout << "p1 != p2 " << endl;
	}
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

类模板与函数模板的区别

类模板与函数模板区别主要有两点:

  1. 类模板没有自动类型推导的使用方式
  2. 类模板在模板参数列表中可以有默认参数
#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}
public:
	NameType mName;
	AgeType mAge;
};

//1、类模板没有自动类型推导的使用方式
void test01()
{
	// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导
	Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板
	p.showPerson();
}

//2、类模板在模板参数列表中可以有默认参数
void test02()
{
	Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数
	p.showPerson();
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

类模板中成员函数创建时机

类模板中成员函数和普通类中成员函数创建时机是有区别的:

  • 普通类中的成员函数一开始就可以创建
  • 类模板中的成员函数在调用时才创建
class Person1
{
public:
	void showPerson1()
	{
		cout << "Person1 show" << endl;
	}
};

class Person2
{
public:
	void showPerson2()
	{
		cout << "Person2 show" << endl;
	}
};

template<class T>
class MyClass
{
public:
	T obj;

	//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成

	void fun1() { obj.showPerson1(); }
	void fun2() { obj.showPerson2(); }

};

void test01()
{
	MyClass<Person1> m;
	
	m.fun1();

	//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}

int main() {

	test01();

	system("pause");

	return 0;
}

类模板对象做函数参数

一共有三种传入方式:

  1. 指定传入的类型 — 直接显示对象的数据类型
  2. 参数模板化 — 将对象中的参数变为模板进行传递
  3. 整个类模板化 — 将这个对象类型 模板化进行传递
#include <string>
//类模板
template<class NameType, class AgeType = int> 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}
public:
	NameType mName;
	AgeType mAge;
};

//1、指定传入的类型
void printPerson1(Person<string, int> &p) 
{
	p.showPerson();
}
void test01()
{
	Person <string, int >p("孙悟空", 100);
	printPerson1(p);
}

//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{
	p.showPerson();
	cout << "T1的类型为: " << typeid(T1).name() << endl;
	cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{
	Person <string, int >p("猪八戒", 90);
	printPerson2(p);
}

//3、整个类模板化
template<class T>
void printPerson3(T & p)
{
	cout << "T的类型为: " << typeid(T).name() << endl;
	p.showPerson();

}
void test03()
{
	Person <string, int >p("唐僧", 30);
	printPerson3(p);
}

int main() {

	test01();
	test02();
	test03();

	system("pause");

	return 0;
}

类模板与继承

当类模板碰到继承时,需要注意一下几点:

  • 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
  • 如果不指定,编译器无法给子类分配内存
  • 如果想灵活指定出父类中T的类型,子类也需变为类模板
template<class T>
class Base
{
	T m;
};

//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};
void test01()
{
	Son c;
}

//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:
	Son2()
	{
		cout << typeid(T1).name() << endl;
		cout << typeid(T2).name() << endl;
	}
};

void test02()
{
	Son2<int, char> child1;
}


int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

类模板成员函数类外实现

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
}
#include <string>

//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
public:
	//成员函数类内声明
	Person(T1 name, T2 age);
	void showPerson();

public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

void test01()
{
	Person<string, int> p("Tom", 20);
	p.showPerson();
}

int main() {

	test01();

	system("pause");

	return 0;
}

类模板分文件编写

问题:

  • 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到

解决:

  • 解决方式1:直接包含.cpp源文件
  • 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制
#pragma once
#include <iostream>
using namespace std;
#include <string>

template<class T1, class T2>
class Person {
public:
	Person(T1 name, T2 age);
	void showPerson();
public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

类模板与友元

全局函数类内实现 - 直接在类内声明友元即可

全局函数类外实现 - 需要提前让编译器知道全局函数的存在

#include <string>

//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;

//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p); 

template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{
	cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}

template<class T1, class T2>
class Person
{
	//1、全局函数配合友元   类内实现
	friend void printPerson(Person<T1, T2> & p)
	{
		cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
	}


	//全局函数配合友元  类外实现
	friend void printPerson2<>(Person<T1, T2> & p);

public:

	Person(T1 name, T2 age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}


private:
	T1 m_Name;
	T2 m_Age;

};

//1、全局函数在类内实现
void test01()
{
	Person <string, int >p("Tom", 20);
	printPerson(p);
}


//2、全局函数在类外实现
void test02()
{
	Person <string, int >p("Jerry", 30);
	printPerson2(p);
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

Licensed under CC BY-NC-SA 4.0
0